HealthcareResearchers discover pathways to severe COVID-19 in children

Researchers discover pathways to severe COVID-19 in children


COVID-19, coronavirus
SARS-CoV-2 (shown here in an electron microscopy image). Credit: National Institute of Allergy and Infectious Diseases, NIH

Researchers have discovered the blood clotting and immune protein pathways that are activated in severe cases of COVID-19 in children, paving the way for earlier diagnosis and more targeted treatments.

The study led by the Murdoch Children’s Research Institute (MCRI) and the University of Melbourne and published in Nature Communications, has identified in children with COVID-19 who present with multisystem inflammatory syndrome, where different body parts can become inflamed including the heart, lungs, and brain and , a type of lung disease.

MCRI researcher and University of Melbourne Ph.D. student Conor McCafferty said the main triggers for severe COVID-19 in children were blood clotting and how proteins in the reacted to the virus.

“Children are in general less susceptible to COVID-19 and present with milder symptoms, but it remained unclear what caused some to develop very ,” he said.

“Our research was the first to uncover the specific blood clotting and immune protein pathways impacted in children with COVID-19 who developed serious symptoms.”

For the study, from 20 healthy children were collected at The Royal Children’s Hospital and samples from 33 SARS-CoV-2 infected children with multisystem inflammatory syndrome or acute respiratory distress syndrome were collected from the Hôpital Necker-Enfants Malades, Greater Paris University Hospitals.

Professor Damien Bonnet, from the Hôpital Necker–Enfants Malades, Greater Paris University Hospitals, said collecting samples to further describe the mechanisms of these syndromes and establishing worldwide collaborations were considered key issues to improve treatment and outcomes.

The research found 85 and 52 proteins were specific to multisystem inflammatory syndrome and acute respiratory distress syndrome, respectively. Both syndromes are major potential outcomes of severe COVID-19.

Mr McCafferty said the discoveries were possible due to proteomics, an experimental approach that allowed the researchers to investigate almost 500 proteins circulating in the blood at once.

Data shows 1.7 percent of reported pediatric hospitalized cases of COVID-19 included admission to the Intensive Care Unit. Children with COVID-19 who present with multisystem inflammatory syndrome also show similar clinical features to Kawasaki disease and such as fever, abdominal pain, vomiting, skin rash and conjunctivitis, making it difficult to quickly diagnose patients.

MCRI Professor Vera Ignjatovic said the results provided an understanding of the processes that underly severe COVID-19 in children, which would help in the development of diagnostic tests for early identification of children at risk, as well as therapeutic targets to improve the outcomes for those with severe cases.

“Knowing the mechanisms associated with severe COVID-19 in children and how the and immune systems in children react to the virus will help diagnose and detect acute COVID-19 cases and allow us to develop targeted treatment,” she said.


Children older than 5 at higher risk of COVID-19-related multisystem inflammatory syndrome


More information:
Pathophysiological pathway differences in children who present with COVID-19 ARDS compared to COVID-19 induced MIS-C, Nature Communications (2022). DOI: 10.1038/s41467-022-29951-9

Citation:
Researchers discover pathways to severe COVID-19 in children (2022, May 2)
retrieved 2 May 2022
from https://medicalxpress.com/news/2022-05-pathways-severe-covid-children.html

This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no
part may be reproduced without the written permission. The content is provided for information purposes only.





Original Source Link

Latest News

ISSA certification: What to know about how to earn an ISSA CPT certificate

Aspiring personal trainers hoping to flex their muscles to potential clients or employers may look at earning a...

Bank of England policymaker warns against cutting rates too soon

Unlock the Editor’s Digest for freeRoula Khalaf, Editor of the FT, selects her favourite stories in this weekly...

The Top New Features in MacOS Sonoma: How to Download, Compatible Macs

Also new in Safari is the ability to separate the browser via profiles, meaning you can create one...

Biden Campaign Devastates Trump Ahead Of President’s Florida Reproductive Rights Speech

In a call with reporters, the Biden campaign sent Trump reeling on the abortion issue as the President...

Pluto’s heart-shaped basin might not hide an ocean after all

Rather than a vast ocean, Pluto’s heart might be hiding a huge, heavy treasure. Computer simulations suggest that an...

Must Read

AI pinpoints where psychosis originates in the brain

New brain scans from people with psychosis may...

Prince William Makes First Appearance Following Kate’s Cancer News

At HuffPost, we believe that everyone needs high-quality...
- Advertisement -

You might also likeRELATED
Recommended to you